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1. Fhys. A Math. Gen. 26 (1993) 65494561. Printed in the UK 

A generalized potential in the theory of the Rabi and 
E 8 E Jahn-Teller system 

H G Reik 
~Fakultiit €ir Physik der UNversil2t Freiburg, D-79104 Freibur& Federal Republic of Gwnany 

Received 31 August 1993 

Abstract. The eigenvalue problem for the Rabi and the E @ E Jahn-Teller Hamiltonian in 
Bargmains Hibert space of d y t i c d  functions is a system of two first-order differential 
equations for the two-wmponent wavefunction$ whose entire solutions (the eipnstates) ate 
sought. We show that each eigenstafe is a terminating se& in the derivatives of a scalar 
entire function D(z) ,  called the generaked potential, which salisfie a higher-order differential 
equation. The wefficiens of the terminating series depend on’the physical parameters and are 
polynomials in the itidepdent variable Z. The weflicients a~ identical In all eigenstam. 

1. Introduction 

The eigenvalue problem for the E C3 E Jaln-Teller system was first solved numerically by 
Longuet Higgins er ai (1958). The calculation was refined by O’Brien (1971) and OBrien 
and Pooler (1979) and extended to other Jahn-Teller and pseudo-Jahn-Teller systems (e.g. 
O’Brien and Evangelou (l980), Grevsmuhl (1981), Pooler (1984)). 

The eigenvalue problem for the full Rabi Hamiltonian (outside the rotating-wave 
approximation) was solved by Swain (1972, 1973). Swain worked with the recurrence 
relations in the occupation number representation and calculated the eigenvalues and 
eigenstates by a continued-fraction technique. 

In 1977 Judd (1977) observed that, for a fictitious value of the angular momentum, 
the Longuet-Higgins recurrence relations become the recurrence relations of the displaced 
harmonic oscillator. Since the recurrence relations for the Rabi system also become 
the recurrence relations for the displaced harmonic oscillator for the level-splitting zero, 
Judds observation indicated that the E C3 E Jahn-Teller system and the Rabi system 
might be mathematically identical (except for different values of the physical parameters). 
Furthermore, Judds observation was the starting point for an ingenious pnurbation scheme 
by Barentzen (1979) and Barentzen era1 (1981). 

The next step for the E ~3 E Jahn-Teller system was also taken by Judd (1979). In 
retrospect, the results of his important paper can be summarized as follows. For energy 
eigenvalues on baseline N the Longuet-Higgins recurrence relations can be solved exactly 
for N isolated values of the vibronic coupling constant K ~ ,  which a~ the zeros of a 
polynomial of degree N .  In 1979 the situation was different: the result was only exemplified 
for the baselines 1 and 2. The calculation was something like an escape from a labyrinth 
and any attempt to tackle N z 2 led into ‘a morass of algebra’, to use Judds own words. 

It was at this point that analytical methods entered the stage. Reik et ai (1982) (referred 
to as I) formulated the E @ E  Jahn-Teller problem and the full Rabi problem in Bargmann’s 
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(1961, 1962) Hilbert space of analytical functions. They obtained a system of two first- 
order differential equations for the component wavefunctions which are identical for the 
two systems. We have now the whole body of methods from the theory of differential 
equations in the complex domain at our disposal. It is easy to systematically rederive the 
Juddian isolated exact solutions in the general form stated above. Furthermore, expansions 
of the component wavefunctions in series of special functions can be given which converge 
much more rapidly than the power series expansion which correspond to the occupation- 
number representation (Nusser 1984). The fastest convergence is obtained by an expansion 
in generalized spheroidal wavefunctions (Reik er al 1987). hencefolth referred to as 11). 

In this paper we introduce a new concept in the analytical theory of nonadiabatic model 
systems. For each eigenstate we construct a scalar entire function D(z)  with the following 
property. Both component wavefunctions are terminating series in the derivatives of D(z )  
with coefficients which are polynomials in the independent variable z. For this reason 
we call D ( z )  the generalized potential. The paper is organized as follows. In section 2 
we collect some material from our earlier publications; in particular, we derive a system 
of first-order differential equations for the component wavefunctions. In section 3 we 
Laplace-transform the equations and formulate the theory with the reciprocal r = K ’ / P  as 
an independent variable. The equations in the r domain are particularly easy to work with. 
The expressions for the component wavefunctions X l ( r ) ,  X z ( r )  in terms of the generalized 
potential X ( r )  are given in section 4, together with the differential equations for X ( r ) .  In the 
following three sections we invert the equations in the r domain and get the corresponding 
results in Bargmann’s Hilbert space for the independent variable z. In section 8 we discuss 
the relation between the results of this paper and the earlier analytical work in I and II. 

2. Model Hamiltonians and the Schrdiiger equation in Bargmann’s Hilbert space of 
analytical functions 

We consider first a canonically transformed version of the E @ E  Jahn-Teller Hamiltonian 

H = a ~ , a L l  + a L l a ~ )  + 1 + (1/2 + 2S)o; 

which describes two-boson modes (+) and (-) interacting with a two-level system. The 
level separation is 1 + 48. The angular momentum 

(2.2) + +  
J = a;,&) - a,-p+) + (1/2)~, 

is a constant of motion with the eigenfunctions 

Jl+) j+l / z  = ( j +  l/2)l*)j+i,z ( j  =o, 1,2....). (2.4) 

Here IO( is the vacuum state for both phonons, and 4 and f are power series in the product 
U & , U ~ )  of the creation operators starting with the power zero. Equations (2.3) and (2.4) 
still make Sense for negative integers j provided the power series for $ and f begin with 
the powers - j  and - j  - 1, respectively. We write the Hamiltonian as H = J + 1 + Zh(+) 
with 

(2.5) h+i =&a(-) +so; + K + a:))q+) + (a(-) +U:+ , )q - ) ] .  
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The eigenfunctions of the Hamiltonian are of the form (2.3) 
H l @ ) j + ~ j z  = All( l ) j+~jz (2.6) 

and satisfy the equivalent Schradinger equation 

~ I + I ~ @ . ) ~ + I / z  ~ l @ ) j + 1 / 2  (2.7) 
where A and E are related by A = j~+ 312 + 2 ~ .  We introduce Judds’ baseline parameter U 
(Judd 1979) instead of E by E = u/2-  j/2-1/2-Kz. The eigenvalue A of the Hamiltonian 
is therefore expressed in terms of the eigenvalue u:~ 

A =  U +  112- 2 ~ ’ .  (28) 
We now apply Bargmann’s method (Bargmann 1961, 1962, Schweber 1967, Klauder and 
Skagerstam 1985, Perelomov 1986) for the solution of the eigenvalue problem (2.7). i.e. 
we map the creation operators onto two complex variables f and q by a;, -+ e, a:) + q. 
which entails a[+] + 8/36, a[-) 3 a/aq. The Hamiltonian ht+), the angular momentum 
and the eigenfunctions are given as ~~ 

w h o ,  = qa/aq + auz + K [(vat + q)ol+) + (a/aq + C ) U ~ - ~ ]  

I+)j+i/z =F’$o)I t) +F’+’~(z)I &) 

(2.9) 
J = ea/ae - qa/aq + (i/z)uz (2.10) 

(2.1 I) 
where z = ~ e  ’q. The eigenvalues U are selected by the requirement that ~ ’ I $ ( z )  and e j + ’ f ( z )  
belong to the space of entire functions in and q. Therefore, (2.1 1) makes sense for positive 
and negative integers j provided that the power series for &(z) and f(z)  begin with the 
power zero for positive j and the powers z - j ,  z-1-l respectively for negative j. The 
Schmdinger~equation (2.7)~(2.9) in Bargmann’s Hilbett space allows for these. expansions 
for positive and negative j and for no others as we shall presently see. 

Insert (2.9) (2.1 1) in (2.7) and collect the spin up and spin down components. Then the 
following system of ordinary linear first-order differential equations is obtained 
zd4(z)/dz - (“12 - j/2 - 112 - 8 - K’)@(Z)  

K [d@(z)/dz + 4 ( z ) ]  + zdf(z)/dz - (u /Z  -, j / 2  - 112 + S - K ’ ) ~ ( z )  = 0. 
+K [z df(z)/dz + (j + 1 + z)f(z)] = 0 (2.12) 

(213) 
These two equations constitute the Schrodinger equation in Bargmann’s Hilbert space. The 
system of (2.12) and (2.13) has two regular singular points z = 0 and z = K’ and an 
irregular singularity at infinity. The exponents at the singular paint z = 0 are 0 and -j - 1 
and the difference of the exponents is integer. For j > 0 we have 0 > - j - 1. Therefore, 
the solution with the exponent - j - 1 is logarithmically divergent at z = 0. On the other 
hand, the solution #(z), f(z) as series of positive powers including zero is regular at the 
origin. Conversely, for negative integers j we have -j - 1 > 0, and the solution with 
the smaller exponent 0 is irregular. ~ The power series for f and 4, which begin with the 
powers - j - 1 and - j, respectively, are regular at the origin. The regular singular point 
z = K’ has the exponents 0 and U, and since U is in general non-integer, the solution with 
the exponent 0 is regular at z = K’. 

The requirement that the regular solution at the origin has an infinite radius of 
convergence, i.e. that f and q5 are entire functions, selects the eigenvalues U and hence the 
eigenvalues I of the Hamiltonian. 

Apart from (2.12) and (2.13). we also use the linear combination (2.12) -~(2.13) = 0 
(z - K’) db(z)/dz - (v /2  - j/2 - 112 - S)@(z) 

(2.14) +K(Z + u/2 + j / 2  + 112 + 6 - K’) f ( z )  = 0. 



6552 H G Reik 

Any two of the three equations (2.12)-(2.14) can be picked out to solve the eigenvalue 
problem. 

We turn now to the Rabi Hamiltonian 
H =U+U+ 1 / 2 + ( 1 / 2 + 2 6 ) U ~ + + K ( U + f U ) ( U ( + ) + U ( - , )  (2.15) 

which can be treated on the same footing. With the Bargmann mapping a+ + 6, a + d/@ 
the Hamiltonian takes the form 

+ d/@)(o(+) + U(-)). (2.16) 
The eigenvalue A are selected by the requirement that the spin up and spin down components 
of the wavefunctions 

(217) 
(m = f1/2) belong to the space of entire functions. We introduce a new independent 
variable z = (l/2)c2, insert (2.16) and (2.17) in the Schriidinger equation and collect 
the spin-up and down components. We then obtain the following system of differential 
equations 
zw"'(z, 6) /dz  - [u /Z  - 1/4 - 6 - K' - (1/2)(m + 1/2)] @'"(z, 6) 

H = t d/dt + l/2 + (1/2 + %)Uz + 

I$'"')) = ( t /~ )m+%(m' ( t ,  8)l t) + (.$/-h)-m+1/2f"'(~, 6)l 4) 

+Kz-m+l/'df"'(z, a)/& 
+K [,-m+W - (1/Z)(m - 1/2)2-"7 f"'(z, 6) 10 (2.18) 

K [ zm+'pwfm' ( z ,  + (zm+'/' + (1/2)(m + 1 / 2 ) ~ ~ - ~ ' ~ ) @ ( ~ ) ( ~ ,  6)] 
+zdf'"(z, 6) /dz 
- [ u p -  1/4+6-~'+(1/2)(m+1/2)]f"(z,S) = O  (2.19) 

and A is given by (2.8). Form = -1/2 (2.18) (2.19) reduce to (2.12) (2.13) for j = -1/2 
and for m = 112 we have 

@(l/"(2,8) = f'-1D'(z, -6 - 1/2) 
f"fl'(2.S) = @(-1/yz,  -8 - 1/2) 

(2.20) 
(2.21) 

so that the eigenvalue problem associated with (2.12) (2.13) exhausts the spectrum of the 
E @ E  Jahn-Teller system and the Rabi Hamiltonian and gives all the eigenfunctions. 

3. Laplace transform of (2.12), (2.13). The equations in the T domain 

So far we were able to treat (2.12) and (2.13) for negative and positive values of j on 
the same footing by properly selecting the expansion of @(z)  and f(z) at the origin. We 
now Laplace-transform (2.12),(2.13) and denote the Laplace transforms of the component 
wavefunctions by @ ( p ) ,  f(p). Since the Laplace transform of the first derivative d@(z)/dz 
depends upon the initial value @(O), the two cases j 2 0 and j < 0 must now be considered 
separately. Since for the Rabi Hamiltonian j = - 1/2, we give the theory for j -= 0. We 
obtain 

-p@(p)/dp - ( 4 2  - j / 2  + l/2 - 6 - K ~ ) @ ( P )  

+"( - [ P  + I]'df(p)/dp + jf ( p ) )  = 0 (3.1) 
K @ ( P )  [ p  -,- :] - p df(p)/dp - (u /2  - j/2 + 1/2 + 6 - ~ * ) f ( p )  = 0. (3.2) 

$ ( P )  = p j - '  exp(K2/p)X1 ( K ' / P )  (3.3) 
f(P) = P j  eXP(K'/P)Xz(K'/P) (3.4) 

Next we introduce two new dependent variables instead of @ ( p )  and f ( p )  
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and eliminate the independent variable p in favor of the variable r = K’/p. By this 
procedure we get a system of differential equations for XI’@) and X&): 

rdXl(r)/dr-(v/2+j/2- 112-8 - ~ ’ - r ) x ~ ( r )  
(3.5) 

KXI(r)(I + r / ~ ’ ) + r d X & ) / d r - X z ( r ) ( A o  -r) = O  (3.6) 
with 

+K(K’ + r)dX’(r)/dr + K [K’ - j + r] X&) = 0 

Ao = V / 2 $  j /2+  1 / 2 + 8  -IC’. (3.7) 
In order to study the singularities of (3.5). (3.6) we solve for dX1 (r)/dr and dXz(r)/dr: 

dXl(r)/dr = X,(r)((u/2+ j /2-  1 / 2 - 6 + ~ ’ j / r + ~ ~ / r ’ }  

-Xz(r) [ (u/2 - j /2 + 112 +8 - K’)/r + ~’Ao/r’} (3.50) 

dXz(r)/dr = -X,(r)K-’(l +K’/r) + Xz(r)(Ao/r - I). (3.6~) 

The system (3.5), (3.6) has two irregular singular points at r = 0 and at infinity; however, 
solutions in power series are admitted . 

x,(r) = CXje’re i = I, 2 (3.8) 
e=o 

which, for the eigenvalues U, tum out to be entire functions. Apart from (3.5) and (3.6). 
we also study the linear combination ~-l(3.5) - (3.6) =-0 
~ - ‘ r d X ~ ( r ) / d r  +~’dXz(r)/dr - x1(r)K-’(v/2 + j /2-  112 -6) 

+Xz(r)(Ao +K’ - j )  = 0 (3.9) 

and any two of the three equations (3.5),(3.6) and (3.9) can be picked out to solve the 
eigenvalue problem in the r domain. 

4. Solution in the r domain. The concept of the generalized potential 

We turn to the solution of the differential equations (3.6). (3.9). We make an ansatz for the 
components Xl(r), Xz(r) of a complex two-dimensional vector field in terms of a scalar 
field X(r) which we call the generalized potential 

XI  (r) = [a + (@ + fr)d/& + (-w3 - ~ ~ ’ r ) d * / d r ~ ]  X(r) 

Xdr) = [ y  + (x + w)d/dr + (ur + Cr’)d’/dr’] X(r). 

(4.1 ) 

(4.2) 

The ansatz contains two free parameters U, P~ whose values determine the gauge. The 
rest of the coefficients a, B ,  f ,  y ,  x. p will presently be determined as functions of the 
parameters K ,  j, S and the eigenvalue U. To this end, insert the ansatz (4.1), (4.2) in (3.9). 
Since K-‘rXI(r) + K’Xz(r) is of first order in X(r) we obtain a second-order differential 
equation 

[(a: +a$, + aF’r2)dz/dr2 + (at ’  + aj”r)d/dr + a;’)] X(r) = 0 (4.3) 

where 
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a;‘’ = -,s(u/~ + j / 2  - 112 - & ) / K  + ( y  + p)~’+ X ( A ~  + K’ - j) (4.7) 

(4.8) 

(4.9) 

a“’ I - - a/K + I L ( A ~  + K’ - j) - <(v/2 + j / 2  - 312 - S ) / K  

a, = -a(u/2 + j / 2  - 112 - @ / K  + y ( ~ o  +K’ - j ) .  

a jE1=o i = o  ,..., e e=0,1,2. (4.10) 

Equations (4.3H4.10) are an analogue of the electrostatic equation V x V@ = 0, which is 
satisfied by all harmonic functions. Equations (4.10) are six linear inhomogeneous equations 
for the six ansatz coefficients a, ,S, <, y ,  x and p with the solution 

(4.11) 

(01 

The differential equation is satisfied by any entire X(r) provided we put 

x = -(u/2 + j / 2  + 112 - 6)v 

p = (1112 - j / 2  + 112 + S)V/K’ - 2(u/2 + j / 2  - 112 - 8);  (4.13) 
, s = - ~ x ( v / ~ -  j/2+1/2+6)v+K3(u/2+ j / 2 - 3 / 2 - 6 ) ~  (4.14) 
a =  - - K ( V / ~ -  j /2+ 1/2+6)(ii+f) (4.15) 
y =-(v/2+ j / 2 -  1/2-6)@+f) (4.16) 

< = -  ~ ( ~ 1 2 -  j /2+ 1/2+8)V (4.12) 

where ii is a shorthand 

,C = (7112 - j / 2  + 112 + S)V/K’ - (u/2 + j / 2  + 312 - 6)V. (4.17) 

The coefficients in (4.1). (4.2) have the same dependence on K ,  j, S and U and the gauge 
parameters U, V in the ground state. and the excited states, i.e. for different potential functions 
X(r). Of course they are numerically different since they depend on the eigenvalue U. 

We proceed now to the equation by which the potentia1 function X(r) is actually 
determined. We insert (4.1), (4.2),(4.11)-(4.17) into (3.6) and obtain (the calculation is 
lengthy) 

0 [ (u+Vr)dX(r) /dr+(V+/1)X(r) ]  -vrd’X/dr’ 
+ [Aov - K4? - r ( v  + iiK’)] (dX(r)/dr) = 0 (4.18) 

where 0 is the operator of a special double confluent Heun equation (Schmidt and Wolf 
1993) with two irregular singular points at r = 0 and r -+ 00: 

0 = r2 d2/dr2 + ( - K ~  - r [j + U - 11 + r’)d/dr 

Equation (4.1 8) is therefore of third order, The entire solutions X (r) for the eigenvalues 
v give, via (4.1),(4.2), the component wavefunctions XI(r), Xz(r) in the ground state and 
the excited states which are solutions of the system (3.6). (3.7). 

In order to find the entire solutions of (4.18) and (4.19), we expand the potential field 
X (r) in a power series 

x( r )  = (K’)-’-’ 4 r n .  (4.20) 

- ~ ’ ~ + [ j / 2 + ~ / 2 -  1 /2-~] [ j /2+v/2+ 1 / 2 + ~ ]  --U. (4.19) 

“=O 

Insertion in (4.18),(4.19) gives the recurrence relation 

&+z(-VK4)(n + 2)(n + 1) 4- Dn+l(n + 1) 
x [vn(n - I - U - j) - U(K’V - (v/2+ j / 2  - 112 - 6 )  

x(u/2+j /2+ 1/2+6) -Aol -~~IC(n+3)+,El ]  

+& [vn(n - U - 2) - K2?n + [ ~ ( n  + 1) + 31 
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x{n(n - j - v )  - K'V + (vj2 + j j2-  1/2 - s ) ( v / ~  + j /2+ 1/2+6))] 
+Dn-l(bn +,ti)@ - 1 - v )  = 0 
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(4.21) 
which, as shown by the last term. allows for terminating power series (4.20) for integer 
eigenvalues U. One has therefore Juddian isolated exact solutions for the potential. 
From these solutions we obtain the Juddian isolated exact solutions for the component 
wavefunctions (Judd 1979, Reik et a1 1981, 1982, 1983, 1985, Kus 1985) by (4.1),(4.2), 
(4.11H4.17). The recurrence relation (4.21) is in general four-term but becomes a three 
term recurrence relation in the special gauge U = 0. The eigenvalue v and the expansion 
coefficients D, of the entire functions X ( r )  in the eigenstates ate found by the continued- 
fraction technique for the solution of recurrence relations (Erdelyi er al 1953 (p 60), Risken 
1984). 

~ , ( r )  = ( ~ ~ 1 - j - l  C r " [ ~ ~ ( c ( + c n ) +  Dn+l(n + 1 ) ( ~  - E K ~ ~ )  

The power-series expansions for the component wavefunctions are. given by 

"=a 

- 4 + z V K 3 ( n  + 2)(n f I)] (4.22) 

(4.23) Xz(r)  = ( ~ * ) - j - '  E r "  [D,,(y f p n  + Fn(n - 1)) +Dn+l(n + 1)(x + un)] ~ 

as shown by (4.1),(4.2) and (4.20). 

5. The component wavefundions and the potential in Bargmann's Hilbert space 

In the last section we solved the eigenvalue problem in the r domain and obtained the 
component wavefunctions Xl(r), Xz(r) ,  the potential X(r) and the eigenvalues U in the 
eigenstates. In this section we. go back to Bargmann's Hilbert space and see how the 
component wavefunctions @(z), f(z) and the potential D(z )  look like in the z domain. 
We do this by first going from the r domain to the Laplace transforms 4(p), f ( p )  of the 
component wavefunctions and the Laplace transform of the potential D ( p ) .  Finally we 
invert the Laplace transforms. 

"=a 

We insert (4.23) in (3.4) and obtain f (p): 
f ( p )  = (KZ)-'-'p'eXp(Kz/p) 

x E(K*/P)" [D,(y  + pn + Cn(n - 1) + D,+l(n + 1)(x + un)] . (5.1) 

We invert this equation (Erdelyi et a1 1954 (p 197, equation (18))) and get the component 
wavefunction ~ f ( 2 )  in the z domain 
f ( z ) = C [ ~ " ( y + p n + i n ( n -  1 ) + ~ , , i ( n + 1 ) 0 ( + v n ) ] w ( j + 1 - n ; ~ )  (5.2) 

where 
(5.3) 

"=O 

n=O 

w(7 - n;  Z) = (Kzz)~-7+n+"1/21 -J+n : ( 2 ~ z l / z ) +  

Equation (5.2) is the Neumann expansion of f (2). We have the following relation between 
the three consecutive functions w(j - n; z), w ( j  + 1 - n; z) and w(j + 2 - n; z) :  
nw(j+I - n ; z ) = ( j + l ) w ( j +  1 - n ; z ) - - 1 ~ ( j - n ; z ) + ~ ~ z w ( j + 2 - n ; ~ )  (5.4a) 
and hence 
n2w(j + I - n;  z) = w ( j  - I - n ;  z )  - (2j + I)w(j - n; z) 

+ [ ( j +  1 ) * - 2 ~ ~ z ] w ( j + l  - n : z ) + ( 2 j + 3 ) ~ ~ z w ( j + 2 - n ; ~ )  
+ ~ ~ z ' w ( j  + 3 - ~ n ;  z). (5.4b) 
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Equation (5.4~) is derived, using the differential recurrence relations for the modified Bessel 
functions (Magnus er al 1966 p 67). We rewrite (5.2) by inserting (5.4a),(5.4h). This gives 
f ( z )  =ED,, (”(j - 1 -nn: z )  + [-/A+ U - 2 j ~ ] w ( j  - n ;  z) 

”=O 

+ [ C L ( j + I ) + y - X - ~ 2 ( j + 1 ) u + y ( j +  t ) j - ~ ~ ’ z V ]  
x w ( j  + I -n ;  z )  + [x ( j  + 2) + u ( j  +2) ( j  + I )  
+ [ ~ ~ - Z u + Z ( i + l ) v } ~ ’ e ] w ( j + ~ - n ; z )  

+ [ ~ X + ~ ( ~ + ~ ) U I K * Z + ~ K ~ Z ~ ] ~ ( ~ + ~ - ~ ; Z )  

~ 

+ u ~ ~ z ’ w ( j  + 4 - n; 211. (5.5) 

(5.6) 

Since 

K-’dw(j - n; z ) / d z  =~k( j  + 1 - n; 2) 

the curly bracket in (5.5) is linear in the derivatives d p w ( j  - 1 -n; z)/dz‘ (e = 0, I ,  2,3,4,5) 
labelled by n with coefficients, which do not depend on n. Therefore, we infer that 

D ( z ) = E D , w ( j - l - n ; z )  
tl=O 

(5.7a) 

is the Neumann expansion of the potential in the z domain. For the Laplace transform D(p) 
equation (5.7~). (4.20) implies 

(5.7h) 
(5.74 

since inversion of (5.7~) leads back to (5 .7~) .  Equation (5.5) is now rewritten as 

f ( z ) =  {C+[- /*+u-2j i j ]~-~d/dz  

+ [ 1 l ( j + 1 ) + y - ~ - 2 ( j + 1 ) u + ~ ( j + i ) j - ~ ~ ~ z ~ ] ~ - ~ d ~ / d ~ ’  
+[x(j  +2) + u ( j  +2)6 + 1) + [p  -2u  + 2 ( j  + I ) E ] K ~ Z ] K - ~ ~ ~ / ~ Z ~  
+ [(x + 2 ( j  + Z)UI K’Z + ~K‘zz] K-* d4/dz4 

+ uK4Z2K-Lod5/dz5} D(z). (5.8) 
By the same method we get the component wavefunction @(z): 

@(Z) = K-’ [ - [e + bK3] + [U - @ + t j  - U K 3  + 2cK3j] K-*d/dz 

+[@U+ I ) + ~ ( ~ + I ) U K ~ - G K ~ ( ~ +  1)j  
+ (5 4- 2k3)K22] K-4d2/dz2 

+ [-UK’(j + 2)( j  + 1) + { @  - V K % j  + 1) + 2 U K 3 )  K2Z] K-6d3/dz3 

f [-2UK3(j + 2) - k 3 K 2 Z ]  K’ZK-’ d4/dz4 

- UK3K4Z2K-L0d5/dz5} D(z). (5.9) 
The component wavefunctions are of fifth order in D(z) in the general case and of fourth 
order in the special gauge U = 0. Note that @(z) and - K ~ ( z )  have common terms. For 
@ ( z )  + K f ( z )  we get the following expression 

‘$(z) + K f ( Z )  = K-2[ 5 + [U - @ + c j  - K-’d/dz 

+ [@(j  + I) + Y K 3  + p ( j  f I)K3 - XK3 + < K Z Z ]  ~-~d’/dz’  
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(5.10) 

which is of fourth order in the general gauge and of third order in the special~gauge v = 0. 
Recall that (I, p, y ,  p, x and < are shorthand for the RHS of (4.11X4.16). Close to the 
regular singular point z = 0 of the system (2.12),(2.13), the entire solutions f (2). +(z) 
are power series. The series for +(z) begins with z-j .  On the other hand, the expansion 
of D(z) (5.7a) in view of (5.3) begins with the power z-j+’. Therefore, (5.9) contains 
dangerous terms with the powers z-j-’, z-j-’ which in fact cancel out. Similarly there are 
no dangerous terms left over in (5.8). 

6. The daerential equation for D(z). First point of view 

The procedure for the solution of the eigenvalue problem (2.12),(2.13) in Bargmann’s 
Hilbert space can be summarized as follows: 

(i) Determine the eigenvalues U and the expansion coefficients D,, by solving the recurrence 

(ii) Calculate ~ D ( z )  (5.7a) and the component wavefunctions f(z), @(z) (5.8),(5.9). 

We are therefore able to’calculate everything in the z domain and in particular get the results 
already obtained in I and 11. It is however interesting from the theoretical point of view to 
study the differential equation satisfied by D(z )  as well. 

If the component wavefunctions are inserted into (212). (2.13) we obtain two differential 
equations of different order for D(z). Since f ( z ) ,  @(z) (5.8),(5.9) solve the eigenvalue 
problem (2.12),(2.13), it is obvious that the two differential equations for the potential have 
 the solution D(z)  (5.7a) in common. This entails a relation between the two differential 
equations for D(z )  which we also derive. From now on we use the special gauge v = 0 
which simplifies the equations without loss of mathematical insight We begin by inserting 
(5.8),(5.9) in (2.12). Since this equation contains the differential quotients only in the 
linear combination @(z)/dz + Kdf ( z ) / d z  and since +(z) + K ~ ( z ) ,  (5.10) is of third 
order in D ( z )  in the special gauge v = 0,~we get a differential equation of fourth order: 

relation (4.21). 

Q . ~ ( z )  = b22(Z - K2)d4~(2)/a24 
+ [ -ij~’z [(3/2) j - u / 2  + 7/2 + 61 

+bz2 [(3/2) j - ( 3 / 2 ) u  + 5/2 + S]) d3D(z)/dz3 
+ { ~JK‘ [-j2/2 + uj/2 - 2 j  + u/Z - 3/2 - S - jS] 

+ Fz [2c4 - K’(U + 1) + (3/4)u2 - U - S + (3/4) j 2  -t 1/4 - j - (3/2) j u  
+ j 8  - S V ]  - 2ijK2z2] dzD(z)/dz2 + 
+ ( ~ [ j / Z - v j ~ -  I / z - s ] [ ~ / ~ - u / ~ +  I / ~ + S ] [ ~ / Z - V / ~ - I / Z + S ]  
+ EK’ [U(U/Z - j / Z  + 1/2 - S) - j] + i~~ [(3/2) j - U / Z  + 3/2+ 81 

+ CK’Z [(-(3/2)j + (3/2)u - 1/2 - 81) dD(z)/dz 

- [j/z - u / ~  - 1/2 - SI [j/2 - u / 2  + 1/2 + 81 } ~ ( z )  = 0. 

+FKz (K’ (2  - Kz) + Kz(U + 1) 

(6.lQ) 
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After regrouping the terms, (6.1~) can be cast in a concise form 

QD(z) P (ijd’(ZD(z))/&’ + [ G ( j  - 1) + f i ]  dD(z)/dz - ik’D(z)} 
+K’(T, + fi)(d’D(z)/dz’ + dD(z)/dz) = 0 . (6.2) 

where P is the operator of a special confluent Heun equation with two regular singular 
points z = 0, z = K’ and an irregular singularity at infinity (Slavyanov 1993): 
P = z(z - K’)d’/dz’ + [ ( j  + Z)(z - K’) - (U + 1)2] d/dz - K’(Z - K’) 

- K ’ ( u + I )  + [ ~ / Z - U / Z -  ~ / z - ~ ] [ ~ / z - u / z +  ~ / z + s ] .  (6.3) 
The identity of the differential equations (6.1~) and (6.lb),(6.lc) is proved by inspection. 
The identity of the terms in the fourth and zeroth order can be read off immediately. 

Next we tum to the differential equation (2.14) which is also solved by the component 
wavefunctions f(z), @(z) (5.8),(5.9). Insertion gives a differential equation of the fifth 
order in D(z) ,  which can be written as (the calculation is lengthy) 

RD(z) (d/& - l)QD(Z) = 0. (6.2) 
Therefore (6.2) is automatically satisfied by any solution of (6.1) and in particular by the 
entire solution (5.7~) which completes the proof. Relation (6.2) between the differential 
equations RD(z) = 0 and QD(z) = 0 is a special case of a g e n d  relation between two 
differential equations of different order which have one (or more) solutions in common 
( h e  1956 (p 126)). 

7. The differential equation for D(z). Second point of view 

There is also a systematic way of deriving differential equation (6.lb),(6.lc) for D(z) .  We 
start from (4.18),(4.19) in the r domain and work in the special gauge v = 0. In (4.18), 
(4.19) we change the independent variable from r to p and eliminate the dependent variable 
X ( K ’ / ~ )  in favour of D(p)  by (5.7b). We obtain 

(d/dp(p’d/dp) + (K’ + [ j  + U - 11 p + K’p’)d/dp 
- K‘V + [ j / ~ +  U / Z  - I/Z - S] [ j / ~ +  U / Z +  1/2 + S] 

+ K4 + ( j  - 1)K2/P} @(PI + I \ ( P )  =o (7.1) 

(7.20) 
= p - j + l q p )  (7.2b) 

(7.3~) 

= p-j+lh(p).  (7.3b) 

(7.4) 

where 

@ ( p )  = p-j” (-”’dD(p)/dp+D(p)([ij( j  - l ) + f i ] p  - S K ‘ ) }  

and 

A(P) = p-’+lij&~ + 1) (P’dD(p)/dp + D(P) (K’ - [ j  - 21 P)] 

A comparison of (7.2~) and (7.3~) shows that 

VP)  = -&P + 1) {WP) - (C + f i ) ~ D ( ~ ) l .  
We insert (7.Zb),(7.3b) into (7.1) and factor out p-j+I. We get the equation 

( p2 d2/dp2 + (K’ + [- j + U + 31 p + K’p’)d/dp 

- ( j  - I ) ( U  + 1) - K’U + [ j / 2 +  V / Z -  1/2 - 81 [ j / Z +  V / Z  + 1/2+S] 

+ K4 - ( j  - 1)K2P] o(P) + A(P) = 0 (7.5) 
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which we now invert 

( z ( z  - K2)(dz/dzz + [(j + l)(z - K*) - 7121 d/& 
-K’(z - 2) - K’V + [ j /Z  - v / z  - 1/2 - S] . 

x [ j / 2  - u/2  + 1/2 + S]} B(z) + h(z) = 0. (7.6) 
The inversion of (7.2). (7.3) gives a(z) and h(z) in terms of D(z) and its derivatives 

B(z) = Vd’(zD(z))/dz’ + (F [ j  - I] + ji)dD(z)/dz - ik’D(z) (7.7) 

10) = -K’ [VdZ(zD(z))/dz3 + Vd*(zD(z))/dz’ + F ( j  - 2)d2D(z)/dz2 

- V(K’ - j + 2)dD(z)/dz f ~ ’ f i D ( z ) ] .  

~A second useful expression for 10) is obtained by inverting (7.4) 

h(z) = -K’ [da(z)/dz + 4(z) - (b + ji)(d2D(z)/dz’ + dD(z)/dz)] . (7.8b) 

Finally, inserting of (7.7), (7.8b) into (7.6) we obtain the differential equation (6.lb), (6.1~) 
for D(z) .   the same method can also be used in the general gauge. 

(7.Sa) 

S. Discussion 

In this section we analyse the calculations which led to the solution of the eigenvalue 
problem for the Rabi and E 8 E Jahn-Teller system in h e  r- and the zdomain from the 
logical point of view and try to get the gist of the matter as clearly as possible. We begin 
with the r domain. The solution is achieved in three steps: 

(1). We chose the ansatz (4.1),(4.2) in such a way that upon insertion of (4.1),(4.2) 
into (3.3, (3.6). two differential equations of the same (third) order are obtained, 

and that the coefficients of the same derivatives in t h e  two equations are polynomials of 
w - (el the same degree. (It is clear that be+l - cetl. = 0,l.Z.) Subtraction of (8.2) from (8.1) 

gives 

‘ (8.3) 

(2). Equations (8.1) and (8.2) are free of contradictions if the polynomials with the 
same superscript are identical or, equivalently, if all polynomials in (8.3) are equal to zero. 
The condition of solvability (4.10). 

(8.4) (YI (e i  - (ti b, - c i  -a, = O  i=O,..,t  t = O , 1 , 2  

is satisfiedby (4.11X4.17). 
(3). The entire solution of the identical equations (8.1),(8.2) are sought. 
We tum now to the discussion of the calculations in the z domain. Likewise, there are 

three steps which are equivalent to the three steps in the r domain although the procedure 
is not identical. 
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(1). We chose the ansatz (5.8),(5.9). Upon insertion in (2.12),(2.13) we obtain two 
differential equations of the sixth order (note that U f 0) 

I?, D(z) = 0 (8.5) - 
RaD(z) = 0 (8.6) 

whose coefficients of d6D/dz6 are identical. Subtraction of (8.5),(8.6) gives a differential 
equation of fifth order: 

QD(z) = 0. (8.7) 
It is impossible to put the coefficients of all derivatives in (8.7) equal to zero by analogy 
with (8.3),(8.4). Equivalently, (8.5) and (8.6) cannot be made identical. 

(2). In order to make (8.5),(8.6) compatible, we determine the ansatz coefficients x, <, 
p ,  B .  a and y by (4.1 1H4.17). This assignment entails that 

(8.8) 
i.e. that the system of fundamental solutions of (8.5) contains the fundamental solutions 
of (8.7). In this case (8.6) is also satisfied by all solutions of (8.7). (In the special gauge 
v = 0 the operator Q is of fourth order and p(z )  = q(z) = 1: see (6.2)). 

RI = (p(z)d/& + q(z))Q 

(3) The entire solution of (8.7) is sought. 
While it is fairly easy to guess the amah (4.1). (4.2) in the r domain by looking at (3.6) 

and (3.7). equations (5.8) and (5.9) are very hard to guess. For this reason we obtained the 
equations in the I domain systematically by inverting (4.1) and (4.2). 

Equations (4.1),(4.2) and (5.8),(5.9) show that the component wavefunctions X l ( r ) ,  
X z ( r )  in the r domain as well as the component wavefunctions b(z), f (z)  in the z 
domain are firmly entangled. Ham (1987) showed that a relation between the component 
wavefunctions in the domain of the configuration coordinates found by O'Brien (1964) is 
a consequence of Berry's geometrical phase (see also Chancey and O'Brien (1988) for 
a generalisation). We should like to transform OUT equations into this domain and make 
contact with the work of O'Brien and Ham. 
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